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Abstract

Closed solutions to the problem of pricing a Russian option when the
underlying process is a diffusion with negative jumps are obtained. More
precisely, the underlying process is assumed to have the form of a Wiener
process with drift and negative mixed–exponentially distributed jumps
driven by a Poisson process. This results generalize those of Shepp and
Shiryaev (1993) for the Wiener process and Gerber, Michaud and Shiu
(1995) for pure–jumps process.

1 Introduction and main results

1.1 Consider a model of a financial market with two assets, a savings account
B = (Bt)t≥0, and a stock S = (St)t≥0. The evolution of B is deterministic,
with

Bt = B0e
rt; B0 > 0, r > 0,

and the stock is random, and evolves according to the formula

St = S0e
Xt ; S0 > 0, (1)

where X = (Xt)t≥0 is a stochastic process defined on (Ω,F, (Ft)t≥0,P), a
stochastic basis that satisfy the usual conditions. Consider also the supremum
process, denoted by (S∗t )t≥0, and given by

S∗t = sup
0≤r≤t

Sr.

In this model L. Shepp and A. N. Shiryaev [SS93] introduced an American
option type on the maximum value of the stock, baptized as Russian option.
Related to this, we mention the European options on the maximum introduced
by A. Conze and Viswanathan [CV91], called look–back options. In [SS93]
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and [SS94] closed solutions were obtained for the problem of pricing Russian
options in the perpetual case, in the framework of the Black–Scholes–Merton
(1973) model (see [BS73]), this is to say, when X is a Wiener process with
drift. Afterwards, Gerber, Michaud and Shiu, in [GMS95] gave closed solutions
to prices of perpetual Russian options when the underlying process was a risk
process, more precisely, a compound Poisson process with mixed exponentially
distributed negative jumps and deterministic drift.

1.2 The purpose of the present paper is to unify these results, that is, to give
closed solutions to the following optimal stopping problem.

• The process X in the stock (1) has the form

Xt =
(
a− σ2

2

)
t+ σWt −

Nt∑
i=1

Yi, (2)

where W = (Wt)t≥0 is a standard Wiener process, σ > 0, N = (Nt)t≥0

is a Poisson process with intensity c, and Y = (Yk)k∈N is a sequence of
non–negative independent random variables with common distribution

F (y) = 1−
n∑
i=1

Aie
−αiy, y ≥ 0, (3)

where Ai > 0 for i = 1, 2, . . . , n;
∑n
i=1Ai = 1; and 0 < α1 < α2 < · · · <

αn. The processes W , N and Y are independent.

• The payoff (ft)t≥0 of the perpetual American option takes the form

ft = e−λt max
[
S∗t , S0ψ0

]
with λ ≥ 0 a discount factor and ψ0 ≥ 1.

To price this contract we can assume that

r = a+ c

∫ +∞

0

(e−y − 1) dF (y),

and this implies that P is a martingale measure. Anyhow, we consider a more
general situation, introducing a dividend rate ρ, given by

ρ = r − a− c
∫ +∞

0

(e−y − 1) dF (y) (4)

under the restriction ρ ≥ 0. With this assumptions the process (e(ρ−r)tSt)t≥0

is a martingale under P.
Rational pricing of Russian options in complete markets led to the consid-

eration of an optimal stopping problem. We solve the following question: find
a function C(ψ0) and a stopping time τ∗ such that

C(ψ0) = sup
τ∈M

E e−(λ+r)τ max
[
S∗τ , S0ψ0

]
= E e−(λ+r)τ∗ max

[
S∗τ∗ , S0ψ0

]
(5)

where M is the class of all P–finite stopping times.
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1.3 Dual Martingale measure. In the case considered, according to (2),
X is a Lévy process. If q ∈ R, Lévy–Khinchine’s formula states

E eiqXt = exp
{
t
[(
a− σ2

2

)
iq − σ2

2
q2 + c

∫
R

(eiqx − 1) dF (x)
]}
. (6)

Taking into account (3), if z ∈ C with Re(z) > −α1, the characteristic exponent
Ψ = Ψ(z) defined through

E ezXt = etΨ(z),

completely determines the law of X, and takes the form

Ψ(z) =
(
a− σ2

2

)
z +

σ2

2
z2 + c

∫ +∞

0

(e−zy − 1) dF (y)

=
(
a− σ2

2

)
z +

σ2

2
z2 − c

n∑
i=1

Ai
z

z + αi
.

(7)

Our path–dependent problem is transformed into an optimal stopping problem
of a Markov process through a change of numeraire, that corresponds to a
change of measure, leading to the introduction of the dual martingale measure.
This procedure was introduced in [SKKM94, SS94, KM94]. In Proposition 1 we
construct the measure P̃ and show, that under this new probability measure, X
is a Lévy process with characteristic exponent

Ψ̃(z) = ãz +
σ2

2
z2 − c̃

n∑
i=1

Ãi
z

z + α̃i
. (8)

The dual parameters are given by Girsanov’s Theorem,

ã = a+ σ2/2, c̃ F̃ (dy) = e−yc F (dy). (9)

This gives that under P̃ the process X changes its distribution only trough its
parameters, according to

c̃ = c

n∑
i=1

Aiαi
1 + αi

, α̃i = αi + 1, Ãi =
Aiαi

1 + αi

/ n∑
i=1

Aiαi
1 + αi

, (10)

for i = 1, . . . , n. We denote also by Ψ̃ the analytical continuation of the char-
acteristic exponent of X under P̃.

1.4 Main Result. We are in position to formulate our main result.

Theorem 1 Consider the market model in 1.1. Assume that ρ in (4) satisfies
ρ ≥ 0. Then, the solution to the optimal stopping problem (5) for ψ0 ≥ 1 has
cost function

C(ψ0) = S0

ψ̃
[
C0

(ψ0

ψ̃

)β0

+ · · ·+ Cn+1

(ψ0

ψ̃

)βn+1
]

if 1 ≤ ψ0 < ψ̃

ψ0 if ψ̃ ≤ ψ0,
(11)
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where β0, . . . , βn+1 are the real roots of the equation

Ψ̃(−β) = λ+ ρ, (12)

with Ψ̃ defined in (8), and satisfy

β0 < 0 < 1 < β1 < α1 + 1 < · · · < βn < αn + 1 < βn+1. (13)

Coefficients C0, . . . , Cn+1 are given by

Ci =
n∏
k=1

(
αk + 1− βi

αk

) n+1∏
k=0
k 6=i

(
βk − 1
βk − βi

)
,

and ψ̃ > 1 is the only root of the equation in ψ

β0C0ψ
−β0 + · · ·+ βn+1Cn+1ψ

−βn+1 = 0. (14)

The optimal stopping time is

τ∗ = inf
{
t ≥ 0:

max
[
S∗t , S0ψ0

]
St

≥ ψ̃
}

(15)

and it is P–a.s. finite.

2 Proof

The first step of the proof consist in a change of numeraire that led us to the
solution of a different optimal stopping problem, having the advantage that the
underlying process is not path–dependent. The second part is the solution of
the deterministic free boundary problem for an integro–differential operator,
related to the generator of this auxiliary process.

Let us introduce a probability measure P̃ on (Ω,F) by its restrictions to Ft,
as

dP̃t
dPt

= eρt
B0St
S0Bt

, (16)

and stochastic processes (Mt)t≥0 and (ψt)t≥0 by

Mt = max[S∗t , S0ψ0], ψt =
Mt

St
. (17)

Proposition 1 (a) There exists a probability measure P̃ such that P̃|Ft = P̃t
with P̃t defined in (16).
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(b) Under P̃, the process X is a Lévy process with characteristic exponent

Ψ̃(iu) = iãu− σ2

2
u2 + c̃

∫ +∞

0

(e−iux − 1) dF̃ (x)

for real u, with

ã = a+ σ2/2, c̃ F̃ (dy) = e−yc F (dy).

(c) If Ẽ denotes expectation with respect to P̃, for an arbitrary bounded stop-
ping time τ we have

E e−(λ+r)τMτ = S0 Ẽ e−(λ+ρ)τψτ . (18)

In view of (c) in the previous Proposition, we must solve an optimal stop-
ping problem under P̃ for the process (ψt)t≥0. Consider then the infinitesimal
generator of ψ, given by

Lψf(z) = −azf ′(z) +
σ2

2
z2f ′′(z) + c̃

∫ +∞

0

[
f(zex)− f(z)

]
dF̃ (x).

In case f is only once differentiable and convex, by f ′′ we mean the second
derivative from the left. The way to find the solution to this associated optimal
stopping problem under P̃ is solving the free–boundary problem, consisting in
finding a constant ψ̃ > 1 and a real function V = V (ψ) with ψ ≥ 1 such that

LψV (z)− (λ+ ρ)V (z) = 0 if 1 ≤ z ≤ ψ̃,
V (ψ̃) = ψ̃,

V ′(1+) = 0,
V ′(ψ̃−) = 1.

(19)

The next proposition presents some technical results, while Propositions 3 and
4 contain the key information to solve this problem.

Proposition 2 (a) The equation in β given by

Ψ̃(−β) = λ+ ρ (20)

has n+ 2 roots β0, β1, . . . , βn+1, that satisfy

β0 < 0 < 1 < β1 < α1 < · · · < βn < αn + 1 < βn+1. (21)

(b) Coefficients Ci in Theorem 1 satisfy the following system of linear equa-
tions

n+1∑
i=0

Ci
1

α̃k − βi
=

1
α̃k − 1

, for k = 1, . . . , n; (22)
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n+1∑
i=0

βiCi = 1; (23)

n+1∑
i=0

Ci = 1; (24)

with α̃k = αk + 1. Furthermore, Ci > 0 for i = 0, 1, . . . , n+ 1.

(c) The function

f(x) = β0C0x
−β0 + · · ·+ βn+1Cn+1x

−βn+1 , x > 0, (25)

has only one root ψ̃ > 1.

The following proposition gives the solution to the free boundary problem.

Proposition 3 Consider a function V defined by

V (ψ0) =

ψ̃
[
C0

(ψ0

ψ̃

)β0

+ · · ·+ Cn+1

(ψ0

ψ̃

)βn+1
]

if 1 ≤ ψ0 < ψ̃

ψ0 if ψ̃ ≤ ψ0,

Then, the following holds:

(a) The function V is convex, continuously differentiable for all ψ ≥ 1 and
twice differentiable for all ψ 6= ψ̃.

(b) For all z ≥ 1

LψV (z)− (λ+ ρ)V (z) ≤ 0.

(c) Furthermore, if 1 ≤ z ≤ ψ̃, then

LψV (z)− (λ+ ρ)V (z) = 0.

Proposition 4 For the function V and the process ψ = (ψt)t≥0 as above,

e−(λ+ρ)tV (ψt)− V (ψ0)

=
∫ t

0

e−(λ+ρ)s
[
LψV (ψs−)− (λ+ ρ)V (ψs−)

]
ds+Qs (26)

for all t ≥ 0, where (Qt)t≥0 is a local martingale under P̃.

Proof (of the Theorem): We verify the following two assertions for the func-
tion C(ψ0) in (11). Observe that C(ψ0) = S0V (ψ0).

(a) E e−(λ+r)τMτ ≤ C(ψ0), for any τ ∈M;

6



(b) E e−(λ+r)τ∗Mτ∗ = C(ψ0), for τ∗ defined in (15).

Let us verify (a). Take τ ∈ M; by Proposition 4 and (b) in Proposition 3 we
have

e−(λ+ρ)τ∧tV (ψτ∧t)− V (ψ0) ≤ Qτ∧t, (27)

so (Qτ∧t)t≥0 is a supermartingale. As Q0 = 0, P̃–expectations in (27) give
Ẽ e−(λ+ρ)τ∧tV (ψτ∧t) ≤ V (ψ0). So

E e−(λ+r)τ∧tMτ∧t = S0 Ẽ e−(λ+ρ)τ∧tψτ∧t

≤ S0 Ẽ e−(λ+ρ)τ∧tV (ψτ∧t) ≤ S0V (ψ0). (28)

Now, by Fatou’s Lemma, as P(τ <∞) = 1 we have

E e−(λ+r)τMτ ≤ lim
t→∞

Ẽ e−(λ+ρ)τ∧tψτ∧t

and (a) follows. In order to prove (b), we verify that (Qτ∗∧t)t≥0 is an uniform
integrable P̃–martingale. By Proposition 4 and (c) in Proposition 3, as ψτ∗∧t− ≤
ψ̃, we have

e−(λ+ρ)τ∗∧tV (ψτ∗∧t)− V (ψ0) = Qτ∗∧t. (29)

Therefore

−V (ψ0) ≤ Qτ∗∧t ≤ e−(λ+ρ)τ∗∧tV (ψτ∗∧t)

= e−(λ+ρ)tV (ψt)I{t<τ∗} + e−(λ+ρ)τ∗V (ψτ∗)I{τ∗≤t}

≤ V (ψ̃) + e−(λ+ρ)τ∗ψτ∗ .

To conclude the uniform integrability of (Qτ∗∧t)t≥0 it is enough to see that
e−(λ+ρ)τ∗ψτ∗ has finite P̃ expectation. First observe that P̃(τ∗ <∞) = 1. This
follows based on the property of homogeneous independent increments of X, as
done in [SS94], see also [Mor00]. By Fatou’s Lemma and (28),

Ẽ e−(λ+ρ)τ∗ψτ∗ = Ẽ
[

lim
t→+∞

e−(λ+ρ)τ∗∧tψτ∗∧t

]
≤ lim inf

t→+∞
Ẽ e−(λ+ρ)τ∗∧tψτ∗∧t ≤ V (ψ0)

as τ∗ is P̃–finite. Now, we have Ẽ(Qτ∗) = 0 and thus, by (29),

Ẽ e−(λ+ρ)τ∗∧tψτ∗∧t −→ Ẽ e−(λ+ρ)τ∗ψτ∗ = Ẽ e−(λ+ρ)τ∗V (ψτ∗) = V (ψ0).

On the other hand

E e−(λ+r)τ∗∧tMτ∗∧t = E e−(λ+r)tMtI{t<τ∗} + E e−(λ+r)τ∗Mτ∗I{τ∗≤t}

= Ẽ e−(λ+ρ)tψtI{t<τ∗} + E e−(λ+r)τ∗Mτ∗I{τ∗≤t}

→ E e−(λ+r)τ∗Mτ∗ .
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as t → +∞, since Ẽ e−(λ+ρ)tψtI{t<τ∗} is bounded by ψ̃ P̃(t < τ∗) and τ∗ is
P̃–finite. Then, part (b) follows from part (c) of proposition 1. This concludes
the proof of the Theorem. �

3 Appendix: Proof of Propositions

Proof (of Proposition 1 ): For the part (a), since Zt = eρtB0St/S0Bt is a
martingale, the construction of P̃ follows as in §1.3 in [SKKM94].

For the part (b) we compute the characteristic exponent of X under P̃. For
u ∈ R we have

Ẽ eiuXt = E
(
eiuXteρt

B0St
S0Bt

)
= E exp

[
(iu+ 1)Xt + ρt− rt

]
= exp

[
t(Ψ(iu+ 1) + ρ− r)

]
,

with Ψ as in (7). Now, taking into account (4):

Ψ(iu+ 1) + ρ− r =
(
a− σ2

2

)
(iu+ 1) +

σ2

2
(iu+ 1)2

+ c

∫ +∞

0

(e−(iu+1)x − 1) dF (x)

=
(
a+

σ2

2

)
iu− σ2

2
u2 + c̃

∫ +∞

0

(e−iux − 1) dF̃ (x),

proving (b).
Now we prove (c). Measures P̃ and P are locally mutually absolutely con-

tinuous, with density process Z = (Zt)t≥0 given by Zt = eρtB0St/S0Bt. When
τ is bounded, by III.3.4 in [JS87],

E e−(λ+r)τMτ = E
(
eρτ

B0Sτ
S0Bτ

× S0e
−(λ+ρ)τMτ∧t

Sτ

)
= S0 Ẽ e−(λ+ρ)τψτ .

concluding the proof. �

Proof (of Proposition 2 ): Let us prove (a). Taking into account (8), (9) and
(10),

Ψ̃(−β) = −β(a+ σ2) +
σ2

2
β(β + 1) + c

n∑
i=1

Aiαi
1 + αi − β

− c
n∑
i=1

Aiαi
1 + αi

.

So (20) reads

−σ
2

2
β2 +

(σ2

2
+ a
)
β + c

n∑
i=1

Aiαi
1 + αi

+ λ+ ρ = c
n∑
i=1

Aiαi
1 + αi − β

. (30)
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The roots are then given by the intersection of the graphs of a sum of n hyper-
bolae with a concave parabola. Evaluation at β = 0 gives that the parabola is
bigger that the sum at this points, and the roots satisfy (21). In order to see
1 < β1 we evaluate both terms in (30) at β = 1 to see that at this point the
parabola is bigger than the sum. For details see [Mor00].

To prove (b) we introduce two auxiliary polynomials

P (x) =
n∏
j=1

(
1 + x/αj

)
, Q(x) =

n+1∏
j=0

(
1 + x/(βj − 1)

)
,

and consider the simple fractional expansion,

P (x)
Q(x)

=
n+1∑
j=0

Dj
1

βj − 1 + x
. (31)

In order to determine the coefficients, as we have simple roots,

Di =
P (1− βi)
Q′(1− βi)

=
n∏
j=1

(αj + 1− βi
αj

)[ 1
βi − 1

n+1∏
j=0
j 6=i

(βj − βi
βj − 1

)]−1

= (βi − 1)Ci.

So, (31) becomes

P (x)
Q(x)

=
n+1∑
j=0

Ci
βi − 1

βi − 1 + x
.

Now, taking x = −αk for k = 1, . . . , n and x = 0 in (31) we obtain (22) and
(24) respectively. To see (23) we multiply both sides of (31) by x and take limits
as x→∞, obtaining

n+1∑
j=0

Ci(βi − 1) = 0,

that in view of (24) concludes the proof. The properties Ci > 0 follows
from (13).

For the part (c), as Ci > 0 for i = 0, . . . , n+ 1, by differentiation in (25) we
get that f is decreasing, and limx→∞ f(x) = −∞. We then see f(1) > 0. But

f(1) = β0C0 + · · ·+ βn+1Cn+1 = 1

in view of (23), proving the existence of a root bigger that one. �
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Proof (of Proposition 3 ): For the first part, clearly V is differentiable for
all orders if ψ 6= ψ̃. Equation (24) shows that V (ψ̃) = ψ̃ meaning that V is
continuous, and equation (23) gives V ′(ψ̃−) = 1, showing that V is continuously
differentiable, i.e. satisfies the smooth pasting condition (see [Shi78]). In what
respects convexity, we examine the second derivative on ψ0 ∈ [1, ψ̃),

V ′′(ψ0) = ψ̃
n+1∑
i=0

βi(βi − 1)Ci
(ψ0

ψ̃

)βi−2

≥ 0,

because Ci > 0 and βi(βi − 1) > 0 in view of (21).
For the parts (b) and (c), take first z > ψ̃. In this case V (z) = z and

V (zex) = zex for x ≥ 0. So V ′′(z) = 0 and

LψV (z)− (λ+ ρ)V (z) = −az + c̃

∫ +∞

0

zex dF̃ (x)− z(c̃+ λ+ ρ)

= z
(
−a+ c̃

n∑
i=1

Ãiα̃i
α̃i + 1

− c̃− λ− ρ
)

= −z(r + λ) ≤ 0

for all z > ψ̃, where c̃ and Ã are given in (10) and ρ in (4). Take now ψ̃ ≥ z, so

LψV (z)− (λ+ ρ)V (z) = −azψ̃ +
n+1∑
i=0

βiCi

( 1

ψ̃

)( z
ψ̃

)βi−1

+
σ2

2
z2ψ̃2

n+1∑
i=0

βi(βi − 1)Ci
( 1

ψ̃2

)( z
ψ̃

)βi−2

+ c̃ψ̃

∫ log(ψ̃/z)

0

n+1∑
i=0

Ci

( z
ψ̃

)βi
eβix dF̃ (x)

+ c̃

∫ +∞

log(ψ̃/z)

zex dF̃ (x)− (c̃+ λ+ ρ)ψ̃
n+1∑
i=0

Ci

( z
ψ̃

)βi
,

that, after computing the integrals became

LψV (z)− (λ+ ρ)V (z)

=
n+1∑
i=0

( z
ψ̃

)βi
Ciψ̃

{
−aβi +

σ2

2
βi(βi − 1) + c̃

n∑
k=1

Ãkα̃k
α̃k − βi

− (c̃+ λ+ ρ)
}

− c̃
n∑
k=1

Ãkα̃k

( z
ψ̃

)α̃k
ψ̃
n+1∑
i=0

{
Ci

α̃k − βi
− 1
α̃k − 1

}
.

By (30) the first sum is zero, and (22) annuls the second. In conclusion,
LψV (z)− (λ+ ρ)V (z) = 0 if z ≤ ψ̃. �
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Proof (of Proposition 4 ): First we use Itô’s Formula to establish the following

V (ψt)− V (ψ0) =
∫ t

0

LψV (ψs−) ds+ qt (32)

for all t ≥ 0, where (qt)t≥0 is a local martingale. Let us apply Itô’s–Meyer for-
mula to the convex function V and process (ψt)t≥0 as in Theorem 51 in [Pro90]:

V (ψt)− V (ψ0) =
∫ t

0

V ′(ψs−) dψs +
1
2

∫ +∞

−∞
Lat (ψ)µ(da)

+
∑
s≤t

[
V (ψs)− V (ψs−)− V ′(ψs−)∆ψs

]
,

(33)

where Lat (ψ) is the local time of (ψt)t≥0 at level a and µ is the second derivative
of V in the sense of distributions. Due to the form of V we have µ(da) =
V ′′(a) da with V ′′ the second derivative from the left. As V ′′ is bounded∫ +∞

−∞
Lat (ψ)µ(da) =

∫ +∞

−∞
Lat (ψ)V ′′(a) da =

∫ t

0

V ′′(ψs−) d〈ψc, ψc〉s (34)

by Corollary 1 to Theorem 51 in [Pro90]. In reference to (ψt)t≥0, as (Mt)t≥0 is
continuous, then

dψt = MtdSt
−1 + St

−1dMt. (35)

Also, as St−1 = S−1
0 e−Xt , we have

dS−1
t = S−1

t

[
−a dt− σ dWt + d

(∑
s≤t

(e−∆Xs − 1)
)]
. (36)

So, (35) and (36) give

dψt = ψt−

[
−a dt− σ dWt + d

(∑
s≤t

(e−∆Xs − 1)
)]

+ S−1
t dMt. (37)

As (Mt)t≥0 does not decrease, the last term in (37) is continuous with bounded
variation, and

d〈ψc, ψc〉t = σ2ψ2
t− dt.

Let us now compensate the jump part in (33). From (37), we know ∆ψt =
ψt−(e−∆Xt − 1), so∑

s≤t

[
V (ψs)− V (ψs−)

]
=
∑
s≤t

[
V (ψs− + ∆ψs)− V (ψs−)

]
=
∑
s≤t

[
V (ψs−e−∆Xs)− V (ψs−)

]
=
∫
R×[0,t]

[
V (ψs−e−x)− V (ψs−)

]
µX(dx, ds)
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where µX is the jump measure of the process X given by

µ(ω, dx, dt) =
∑
s

I{∆Xs(ω) 6=0}δ(∆Xs(ω),s)(dx, dt).

As µX is an extended Poisson measure, according to II.1.21 in [JS87], its com-
pensator under P̃ is given by c̃ F̃ (−dx)× dt. From this∑

s≤t

[
V (ψs)− V (ψs−)

]
=
∫
R×[0,t]

[
V (ψs−ex)− V (ψs−)

]
c̃ ds dF̃ (x) + q1

t

with (q1
t )t≥0 a local martingale. All this computations and (33) give

V (ψt)− V (ψ0) =
∫ t

0

{
−aψs−V ′(ψs−) +

σ2

2
ψ2
s−V

′′(ψs−)

+ c̃

∫ +∞

0

[
V (ψs−ex)− V (ψs−)

]
dF̃ (x)

}
ds

+ q1
t +

∫ t

0

ψs−V
′(ψs−)(−σ) dWs +

∫ t

0

V ′(ψs−)
Ss

dMs.

(38)

As ∆Xt ≤ 0 the support of the measure dMs is concentrated on the set where
Mt = St, that is to say, when ψs = 1. But Proposition 2 gives V ′(1) = 0. So,∫ t

0

V ′(ψs−)
Ss

dMs =
∫ t

0

V ′(1)
Ss

I{ψs=1} dMs = 0

since V ′(ψs−)I{ψs=1} = V ′(1)I{ψs=1}. If we define q = (qt)t≥0 by

qt = q1
t +

∫ t

0

ψs−V
′(ψs−), (−σ) dWs

then (38) coincides with (32). The last step is the application of Itô’s Formula
to the process given by

(
e−(λ+ρ)tV (ψt)

)
t≥0

. We obtain (26), where (Qt)t≥0 is
a stochastic integral with respect to (qt)t≥0. �
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